# Convolutional Neural Networks for Particle Tracking

Steve Farrell for the HEP.TrkX project

May 8, 2017 DS@HEP, FNAL







# Particle tracking at the LHC

- An interesting and challenging pattern recognition problem
- A very important piece of event reconstruction!



Up to 200 interactions per bunch crossing



Thousands of charge particle tracks

# ATLAS and CMS tracking detectors



http://atlas.cern/discover/detector/inner-detector

- Cylindrical detectors composed of pixel, strip, or TRT layers to detect passage of charged particles
- Both undergoing evolution for HL-LHC
- O(100M) readout channels!

# The situation today

- Current tracking algorithms have been used very successfully in HEP/LHC experiments
  - Good efficiency and modeling with acceptable throughput/ latency
- However, they don't scale so well to HL-LHC conditions
  - Thousands of charged particles, O(10<sup>5</sup>) 3D spacepoints,
    while algorithms scale worse than quadratic
- Thus, it's worthwhile to try and think "outside the box"; i.e., consider *Deep Learning algorithms*
  - Relatively unexplored area of research
  - Might be able to reduce computational cost or at least increase parallelization
  - Might see major improvements

# Some deep learning inspirations

#### **Image segmentation**





https://arxiv.org/abs/1604.02135

### Our goal (more or less...):



Photo by Pier Marco Tacca/Getty Images

-0.2

#### Image captioning





A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.



Online object tracking

https://arxiv.org/abs/1604.03635

# Current algorithmic approach (ATLAS, CMS)

- Divide the problem into sequential steps
  - 1. Cluster hits into 3D spacepoints
  - 2. Build triplet "seeds"
  - 3. Build tracks with combinatorial Kalman Filter
  - 4. Resolve ambiguities and fit tracks





# Where to begin?

- What could ML be applied to?
  - hit clustering
  - seed finding
  - single-track hit assignment
  - multiple-track "clustering"
  - track fitting
  - end to end pixels to tracks
- How to represent the inputs, outputs (and intermediates)?
  - discrete vs. continuous space
  - hit assignments vs. physics quantities
  - engineered vs. learned representations

Many options!

# Various challenges

## Data sparsity

- Occupancy << 1%</li>
- Except in dense jets...

## Data irregularity

- Complex geometry
- Detector inefficiencies, material effects

## Defining good cost functions

- Particularly for multi-track models
- How to quantify reco efficiency in a differentiable way?

## Experimental constraints on performance, interpretability

A big deal, for obvious reasons

## Time and space complexity constraints

Otherwise, what's the point?



## **Detector images**

 Neutrino experiments may have nice "image" detectors, but it's a bit harder with LHC detectors!





- Maybe we can unroll + flatten the barrel layers
- ...but size increases with each detector layer
- Raw data is extremely high dimensional (O(10<sup>8</sup>) channels!)
  - Maybe we can coarsen it (like AM methods)
  - Smart down-sampling needed
    - CV techniques are good at this



## Convolutional networks as track finders



- Convolutional filters can be thought of as track pattern matchers
  - Early layers look for track stubs
  - Later layers connect stubs together to build tracks
  - Learned representations are in reality optimized for the data => may be abstract and more compact than brute force pattern bank
- The learned features can be used in a variety of ways
  - Extract out track parameters
  - Project back to detector image and classify hits

## What can CNNs learn about tracks?

- Convolutional auto-encoder: can it learn a smaller-dimensional representation that allows it to fully reconstruct its inputs?
  - Decently well



- **De-noising**: can it clean out noise hits?
  - Seems so



## What can CNNs learn about tracks?

- Track parameter estimation: can it predict the tracks' parameters?
  - Some inspiration from Hough Transform: binned parameter space with peaks at the correct values
  - By converting regression problem into discrete classification problem, can handle variable number of tracks with relatively simple CNN architecture



- Might be an interesting approach, but it has limitations
  - doesn't map params onto the hits like Hough
- precision comes at cost of dimensionality
  https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d\_learning.ipynb

# Ongoing HEP.TrkX studies

## About the project

- https://heptrkx.github.io/
- Pilot project funded by DOE ASCR and COMP HEP
- Part of HEP CCE
- People:

**LBL**: Me, Mayur Mudigonda, Prabhat, Paolo

**Caltech**: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng **FNAL**: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

## Exploratory work on toy datasets

- Hit classification for seeded tracks with LSTMs and CNNs
- End-to-end track parameter estimation with CNN + LSTM
- and some others

## Hit classification with LSTMs in 2D



## Hit classification with CNNs in 2D

- CNNs can also extrapolate and find tracks
- Extrapolation reach may be limited without downsampling
- Autoencoder architecture allows to extrapolate farther

#### Trained with 10 conv layers, no down-sampling



#### 9-layer convolutional "autoencoder"





## Hit classification with CNNs in 3D



- Basic CNN model with 10 layers and 3x3x3 filters
- Gives nice clean, precise predictions

## Architecture comparisons





- Both LSTMs and CNNs do well at classifying hits for reasonable occupancy
- Models' performance degrades with increasing track multiplicity
- CNNs seem to scale well to high track multiplicity

## Track parameter estimation



- Use a basic CNN with downsampling and regression head to estimate a track's parameters
  - could be an auxiliary target to guide training, or potentially useful as the final output of tracking!
- Identifying straight line params in heavy noise:



# Extending to variable number of tracks

- Attach an LSTM to a CNN to emit parameters for a variable number of tracks!
  - The LSTM generates the sequence of parameters
  - Requires an ordering the model can learn
  - Should provide some kind of stopping criteria







## Estimating uncertainties on parameters

Train the model to also estimate the uncertainties by adding additional targets:



Train using a log gaussian likelihood loss:

$$L(\boldsymbol{x}, \boldsymbol{y}) = \log |\boldsymbol{\Sigma}| + (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{f}(\boldsymbol{x}))$$

• and voila!



# Visualizing CNN features

- We can visualize what the CNN is learning by finding images which maximize a particular filter's activation
- Here are the 2nd layer filters of the CNN+LSTM track parameter model



## Conclusion

- There is some hope that deep learning techniques could be useful for particle tracking
  - Powerful non-linear modeling capabilities
  - Learned representations > engineered features
  - Easy parallelization
- It's not yet known if computer vision techniques like CNNs offer the most promise, but they have some nice features
  - They can learn useful things about the data and seem versatile
  - Some successes seen with highly simple toy datasets
- Where do we go from here?
  - Try to apply these ideas to realistically complex data
  - Continue thinking up new approaches



# 3D toy detector data



- Starting to get a little more "realistic"
  - 10 detector planes, 32x32 pixels each
  - Number of background tracks sampled from Poisson
  - With/without random noise hits
- · Adapting my existing models to this data is mostly straightforward
  - Flatten each plane for the LSTM models
  - Use 3D convolution

## What can CNNs learn about tracks?

- Track counting: can it predict how many tracks are in an event?
  - can be framed as a regression problem, but here I framed it as a classification problem



seemingly not a very difficult task for a deep NN

# Next-layer LSTM prediction



- Next-layer model gives predictions that are less precise but smoother and more accurate
  - Mostly unaffected by nearby stray hits
- With this detector occupancy, they are the best at classifying hits
  - but this may change with higher occupancy

# The HEP.TrkX project

#### A 1-year pilot project to develop ML algorithms for HEP tracking

- Funded by DOE ASCR and COMP HEP, part of HEP CCE
- Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL

**LBL**: Me, Mayur Mudigonda, Prabhat, Paolo

**Caltech**: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng **FNAL**: Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

#### Some goals

- Explore the broad space of ideas on simplified tracking problems
- Develop a toolkit of promising ideas
  - ideas that work (physics constraints)
  - ideas that scale (computing constraints)
- The work is in an exploratory phase
  - Testing ideas in a breadth-first fashion
  - Very much a work-in-progress

## Other ideas - data transforms

Hough Transform breaks down in LHC-like data due to process noise

and high occupancy





- But what if a deep network could *learn* a mapping to group together hits that belong to the same track?
  - You don't need to impose a specific representation
  - The model could take event context into account

# Other ideas - graph convolutions

- Graph convolutions operate on graph-structured data, taking into account distance metrics
  - https://tkipf.github.io/graph-convolutional-networks/



- Connections between ~plausible hits on detector layers can form the graph
  - Handles sparsity naturally
  - Scales naturally with occupancy
- I haven't dedicated much thought to this yet, but it may be versatile enough to do the kinds of things I've already demonstrated

# ATLAS tracking in dense environments



Stolen from Ben Nachman's TPM presentation: <a href="https://indico.physics.lbl.gov/indico/event/433/">https://indico.physics.lbl.gov/indico/event/433/</a>

# Model architectures - ConvNN

| Layer (type)                      | Output  | Shape          | Param #  | Connected to                            |
|-----------------------------------|---------|----------------|----------|-----------------------------------------|
| <pre>input_1 (InputLayer)</pre>   | (None,  | 10, 32, 32)    | 0        | ======================================= |
| reshape_1 (Reshape)               | (None,  | 1, 10, 32, 32) | 0        | input_1[0][0]                           |
| convolution3d_1 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 224      | reshape_1[0][0]                         |
| convolution3d_2 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_1[0][0]                   |
| convolution3d_3 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_2[0][0]                   |
| convolution3d_4 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_3[0][0]                   |
| convolution3d_5 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_4[0][0]                   |
| convolution3d_6 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_5[0][0]                   |
| convolution3d_7 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_6[0][0]                   |
| convolution3d_8 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_7[0][0]                   |
| convolution3d_9 (Convolution3D)   | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_8[0][0]                   |
| convolution3d_10 (Convolution3D)  | (None,  | 8, 10, 32, 32) | 1736     | convolution3d_9[0][0]                   |
| convolution3d_11 (Convolution3D)  | (None,  | 1, 10, 32, 32) | 217      | convolution3d_10[0][0]                  |
| reshape_2 (Reshape)               | (None,  | 10, 1024)      | 0        | convolution3d_11[0][0]                  |
| timedistributed_1 (TimeDistribute | e(None, | 10, 1024)      | 0        | reshape_2[0][0]                         |
| mal a 1 a 16065                   | ======  | ==========     | ======== | 0.1                                     |

Total params: 16065

# Model architectures - Conv autoencoder

| Layer (type)                               | Output Sha  | pe             | Param # | Connected to          |
|--------------------------------------------|-------------|----------------|---------|-----------------------|
| input_1 (InputLayer)                       | (None, 10,  | 32, 32)        | 0       |                       |
| reshape_1 (Reshape)                        | (None, 1,   | 10, 32, 32)    | 0       | input_1[0][0]         |
| convolution3d_1 (Convolution3D)            | (None, 8,   | 10, 32, 32)    | 224     | reshape_1[0][0]       |
| convolution3d_2 (Convolution3D)            | (None, 8,   | 10, 32, 32)    | 1736    | convolution3d_1[0][0] |
| maxpooling3d_1 (MaxPooling3D)              | (None, 8,   | 10, 16, 16)    | 0       | convolution3d_2[0][0] |
| dropout_1 (Dropout)                        | (None, 8,   | 10, 16, 16)    | 0       | maxpooling3d_1[0][0]  |
| <pre>convolution3d_3 (Convolution3D)</pre> | (None, 16,  | 10, 16, 16     | )3472   | dropout_1[0][0]       |
| convolution3d_4 (Convolution3D)            | (None, 16,  | 10, 16, 16     | ) 6928  | convolution3d_3[0][0] |
| maxpooling3d_2 (MaxPooling3D)              | (None, 16,  | 10, 8, 8)      | 0       | convolution3d_4[0][0] |
| dropout_2 (Dropout)                        | (None, 16,  | 10, 8, 8)      | 0       | maxpooling3d_2[0][0]  |
| convolution3d_5 (Convolution3D)            | (None, 32,  | 10, 8, 8)      | 13856   | dropout_2[0][0]       |
| maxpooling3d_3 (MaxPooling3D)              | (None, 32,  | 10, 4, 4)      | 0       | convolution3d_5[0][0] |
| dropout_3 (Dropout)                        | (None, 32,  | 10, 4, 4)      | 0       | maxpooling3d_3[0][0]  |
| convolution3d_6 (Convolution3D)            | (None, 64,  | 10, 4, 4)      | 55360   | dropout_3[0][0]       |
| maxpooling3d_4 (MaxPooling3D)              | (None, 64,  | 10, 2, 2)      | 0       | convolution3d_6[0][0] |
| dropout_4 (Dropout)                        | (None, 64,  | 10, 2, 2)      | 0       | maxpooling3d_4[0][0]  |
| convolution3d_7 (Convolution3D)            | (None, 96,  | 10, 2, 2)      | 73824   | dropout_4[0][0]       |
| maxpooling3d_5 (MaxPooling3D)              | (None, 96,  | 10, 1, 1)      | 0       | convolution3d_7[0][0] |
| dropout_5 (Dropout)                        | (None, 96,  | 10, 1, 1)      | 0       | maxpooling3d_5[0][0]  |
| convolution3d_8 (Convolution3D)            | (None, 128  | , 10, 1, 1)    | 36992   | dropout_5[0][0]       |
| permute_1 (Permute)                        | (None, 10,  | 128, 1, 1)     | 0       | convolution3d_8[0][0] |
| reshape_2 (Reshape)                        | (None, 10,  | 128)           | 0       | permute_1[0][0]       |
| timedistributed_1 (TimeDistribut           | e(None, 10, | 1024)          | 132096  | reshape_2[0][0]       |
| Total params: 324488                       | =======     | === <b>===</b> | ======= |                       |

## Model architectures - LSTM

| Layer (type)                     | Output Shape      | Param # | Connected to  |
|----------------------------------|-------------------|---------|---------------|
| input_1 (InputLayer)             | (None, 9, 1024)   | 0       |               |
| lstm_1 (LSTM)                    | (None, 9, 1024)   | 8392704 | input_1[0][0] |
| timedistributed_1 (TimeDistribut | ce(None, 9, 1024) | 1049600 | lstm_1[0][0]  |

Total params: 9442304